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Abstract

In conventional boundary element method (BEM) analysis, the displacements and stresses at an interior point of
an elastic body are obtained using the respective Somigliana's identities, after the boundary solutions for the

displacements and tractions have been solved for. This paper presents the derivation of Somigliana's identity for the
strains at any interior point of an anisotropic domain subjected to thermal e�ects. From these strains, the
corresponding stresses at the interior point may be calculated directly using the Duhamel±Neumann relation. This

identity is obtained in terms of integrals over the boundary of the solution domain only. Di�culties arising from the
exact transformation of the volume integral term associated with thermal loading in BEM analysis into surface
integrals in the anisotropic case are discussed and the procedures to overcome them are described. Three numerical

examples are presented to demonstrate the veracity of the formulations developed. # 1999 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

The distinctive feature of the boundary element method (BEM) for engineering stress analysis is that
only boundary discretisation of the solution domain is required. In the conventional direct boundary
integral equation (BIE) formulation for elastostatics, however, body-force and thermal loading give rise
to additional volume integrals in the integral equation which destroys the notion of the BEM as a
boundary solution technique. To deal with the volume integrals associated with these e�ects, several
schemes have been proposed over the years (see, e.g., Lachat, 1975; Rizzo and Shippy, 1977; Tan, 1983;
Danson, 1983; Gipson and Camp, 1985; Deb and Banerjee, 1990; Deb et al., 1991). Among these
schemes, the exact transformation method (ETM), the focus of the present work, is fundamentally most
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appealing. This is because it restores the analysis to a purely boundary one by analytically transforming
the volume integrals into boundary ones exactly. This has thus become the common technique in the
BEM analysis of isotropic bodies when inertia and/or thermal e�ects are considered.

However, because of the more complex nature of anisotropic elasticity, similar volume-to-surface
transformations for anisotropic bodies has not been successfully achieved until very recently. In a semi-
direct BEM approach, Ao (1994) recast the elasticity equations into a BIE in terms of unknown scalar
potentials to be solved for, when analysing orthotropic bodies with body-forces. In the same spirit as
what has been achieved in isotropic elasticity, Zhang et al. (1996, 1997) were perhaps the ®rst to report
the successful attempts of the volume-to-surface integral transformation of the body force term in 2-D
BEM analysis of anisotropic elasticity using the direct formulation. Although thermal loading can be
treated as e�ective body-force in quasi-static thermoelasticity (see, e.g., Sokolniko�, 1956), the extension
of the ETM to deal with thermal e�ects for general anisotropy is not as direct and simple as in isotropic
elasticity. In dealing with this `volume integral problem' for the analysis of plane anisotropic thermoelas-
ticity, it should be noted that Deb and Banerjee (1990) and Deb et al. (1991) have also proposed the
particular integral method (PIM). However, in the general case, this technique would require the domain
be subdivided into volume cells and the temperature ®eld in each of them be approximated by simple
polynomials. The particular integrals need also be judiciously chosen in order that satisfactory results be
obtained. The exact volume-to-surface integral transformation for BEM in anisotropic thermoelasticity
has been met with little success until very recently, and only for boundary solutions (Shiah and Tan,
1999a). The key to this is the use of domain mapping to ®rst transform the governing heat conduction
equation for the coupled anisotropic temperature ®eld T into the canonical form of the simple Poisson's
equation (see Shiah and Tan, 1997); this will be further elaborated later.

In BEM analysis, it is well-known that interior point displacements and stresses, if they are required,
are determined as a secondary process from the boundary solutions. The former quantities can be
directly determined from Somigliana's displacement identity. The corresponding identity for strains in
an anisotropic body when body forces and thermal e�ects are absent have been derived by Cruse and
Swedlow (1971). This identity for the case when body forces are present has also been derived very
recently by the present authors (Shiah and Tan, 1999b). However, because of the domain mapping men-
tioned above, the derivation of the identity when thermal loads are considered is signi®cantly more com-
plicated and has to be handled in a di�erent manner from those seen in Cruse and Swedlow (1971) and
Shiah and Tan (1999a, 1999b). The derivation of Somigliana's strain identity for this case has hitherto
not been reported in the literature.

The aim of this paper is to derive the Somigliana's strain identity of thermoelasticity for a generally
anisotropic medium, from which the stresses at interior points of the body, if required, can be deter-
mined. This has been successfully implemented into a 2-D BEM computer code based on the quadratic
isoparametric element formulation. The veracity of the analytical and numerical formulations is illus-
trated by three examples. Before discussing these, the basic framework of the ETM for BEM in thermoe-
lasticity will ®rst be presented. This will be followed by the derivation of the Somigliana's strain identity.
The usual indicial notation in 2-D elastostatics is used throughout here, in which the indices for all ten-
sor quantities have a range of 2.

2. Review of the BIE method for plane anisotropic thermoelasticity

In the presence of thermal loads, the BIE for a generally anisotropic body may be written as follows

Cijui�P� �
�
S

ui�Q�Tij�P,Q�dS �
�
S

ti�Q�Uij�P,Q�dS�
�
S

giknkTUij�P,Q�dSÿ
�
O
gikT,kUij�P,q�dO, �1�
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where ui and ti are the displacements and tractions, respectively; nk represents the components of the
unit outward normal vector along the boundary S; Q and q represent the ®eld points on the boundary S
and in the domain O, respectively and P represents the source point on S. Also, gij are constant coe�-
cients related to thermal properties of the material; Cij are coe�cients which depend on the boundary
geometry at the source point P; Tij(P,Q ) is the traction fundamental solution, and Uij(P,q ) is the displa-
cement fundamental solution which may be written as

Uij�P,q� � 2 Refri1Aj1 log z�m1� � ri2Aj2 log z�m2�g: �2�
In Eq. (2), rij and Aij are complex constants which depend on the material properties; mi are the com-

plex roots of the characteristic equation for the anisotropic material (Lekhnitskii, 1981) and the oper-
ator, Re{.}, takes the real part of the complex quantities within the parentheses. The generalized
variables z(mi ), with components denoted by z1 and z2 in what follows, are de®ned by

zi �
ÿ
x1 ÿ x

p
1

�� mi
ÿ
x2 ÿ x

p
2

� � z1 � miz2, �3�

where (z1,z2) are the local coordinates of the ®eld point Q(x1,x2) with origin at �xp
1,x

p
2�, the location of

the source point P. It can be seen in Eq. (1) that the last term on the right-hand-side is a volume integral
which needs to be analytically transformed into boundary ones in order to restore the distinctive feature
of the BEM as a boundary solution computational technique.

Under steady state conditions, the temperature T in the anisotropic domain must also satisfy the heat
conduction equation

kijT,ij � C0, �4�
where C0 is a constant and kij are the heat conductivity coe�cients of the material. Furthermore, these
coe�cients kij must satisfy the following conditions, from thermodynamic considerations,

k11 > 0,

k22 > 0,

k12 � k21,

D � k11k22 ÿ k212 > 0: �5�
In order to transform the volume integral in Eq. (1) into boundary integrals, Eq. (4) is ®rst trans-

formed into the standard form of the Poisson's equation, as follows:

T,11 � T,22 � C1, �6�

where the underlined indices denote the new-coordinate system x̂i on the mapped plane. This may be
achieved using the method of characteristics. In essence, the domain mapping is carried out through a
non-orthogonal transformation via

�
x̂1
x̂2

�
�

0BBB@
����
D
p

k11
0

ÿk12
k11

1

1CCCA
�
x1

x2

�
: �7�
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Details of this process are given in Shiah and Tan (1997). In the mapped plane, the constant C1 can
be shown to be given by

C1 � C0k11
D

: �8�

Abbreviating the volume integral in Eq. (1) by (V.I.)j, it may now be rewritten as

�V:I:�j � ÿ
�
Ô
gikT,kUij�P,q�dÔ, �9�

where gik can be shown to be given by (Shiah and Tan, 1997)

gik �
�
g11 g12
g21 g22

� 0BBB@
1
ÿk12����

D
p

0
k11����
D
p

1CCCA: �10�

The generalized complex variable zi may now also be re-written as

zi � mji
�
x̂j ÿ x̂Pj

�
, �11�

where the coe�cients mji are given by (using Eq. (7))

mji �

0B@ k11 � m1k12����
D
p k11 � m2k12����

D
p

m1 m2

1CA: �12�

By consecutively applying Green's theorem and using the auxiliary condition of Eq. (6), the volume
integral term can be analytically transformed into boundary ones, as follows

�V:I:�j �
�
Ŝ

h�
gikQijk,t�P,Q�Tÿ gikQijk�P,Q�T,t � C1gikRijkt�P,Q�

�
nt ÿ gikUij�P,Q�Tnk

i
dŜ: �13�

The explicit forms of the functions Uij, Qijk, Qijk,t and Rijkt in Eq. (13) can be found in the authors'

Fig. 1. A general multiply-connected domain.
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previous work (Shiah and Tan, 1999a); thus, they will not be repeated here as they are not the main
focus of the present work.

Due to the discontinuity along the branch cut (chosen to be the negative z1-axis by default) of the
multi-valued function log(z ), the exact transformation above is only valid for some domain shapes (see,
e.g., Zhang et al., 1996). In the general case with multiple intersections of the domain boundaries along
the branch cut, the discontinuity can be `removed' by adding a series of extra line integrals. With refer-
ence to Fig. 1, if the negative z1-axis intersects the domain m times in the intervals [(z1)2m ÿ 1, (z1)2m ÿ 2],
[(z1)2m ÿ 3, (z1)2m ÿ 4],..., [(z1)1, (z1)0], the general BIE for 2-D anisotropic thermoelasticity becomes

Cijui�P� �
�
S

ui�Q�Tij�P,Q�dS �
�
S

ti�Q�Uij�P,Q�dS�
�
S

giknkTUij�P,Q�dS�
�
Ŝh�

gikQijk,t�P,Q�Tÿ gikQijk�P,Q�T,t � C1gikRijkt�P,Q�
�
nt ÿ gikUij�P,Q�Tnk

i
dŜ�

Xm
n�1

�l2nÿ2
l2nÿ1

Gj�z1�dz1

�14�

where the explicit form of the function Gj can be found in Shiah and Tan (1999a) and will not be
repeated here. The original integral equation Eq. (1) has been recast into a purely boundary one in Eq.
(14). Following the usual BEM process of boundary discretisation and collocation at source points, this
equation can be numerically solved for the displacements, ui,, and tractions, ti, at nodal points along the
boundary. Details of these are well documented in the BEM literature and will not be elaborated here.

Once the displacements and tractions at all the boundary points have been obtained, the displace-
ments at any interior point p, if needed, can be computed from Somigliana's displacement identity, viz.

uj� p� � ÿ
�
S

ui�Q�Tij� p,Q�dS�
�
S

ti�Q�Uij� p,Q�dS�
�
S

giknkTUij� p,Q�dS

ÿ
�
Ô
gikT,kUij� p,q�dÔ:

�15�

An identical volume-to-surface integral transformation of the last term in Eq. (15), as has been done
for the boundary solution, can be performed and this identity can be re-written as

uj� p� � ÿ
�
S

ui�Q�Tij� p,Q�dS�
�
S

ti�Q�Uij� p,Q�dS�
�
S

giknkTUij� p,Q�dS�
�
Ŝh�

gikQijk,t� p,Q�Tÿ gikQijk� p,Q�T,t � C1gikRijkt� p,Q�
�
nt ÿ gikUij� p,Q�Tnk

i
dŜ�

Xm
n�1

�l2nÿ2
l2nÿ1

Gj�z1�dz1:

�16�

To determine the stresses at p, the strains there, ejl( p ), must ®rst be calculated using the strain±displa-
cement relations, as follows

ejl� p� � 1

2

 
@uj� p�
@xp

l

� @ul� p�
@xp

j

!
�17�

In the absence of inertia and thermal e�ects, Cruse and Swedlow (1971) have derived the Somigliana's
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strain identity for any interior point p as

eSjl � p� �
1

2

��
S

ui ~Tijl� p,Q�dSÿ
�
S

ti ~Uijl� p,Q�dS
�

�18�

where the superscript S on ejl is to denote the contributions of boundary displacements and elastic trac-
tions only in the expression. In Eq. (18), ~Tijl� p,Q� and ~Uijl� p,Q� are given by

~Tijl� p,Q� �
�
@Tij� p,Q�
@xl

� @Til� p,Q�
@xj

�
� 2 Re

(
m̂i1�n2 ÿ m1n1�Gjl1

z21
� m̂i2�n2 ÿ m2n1�Gjl2

z22

)
�19�

and

~Uijl� p,Q� �
�
@Uij� p,Q�
@xl

� @Uil� p,Q�
@xj

�
� 2 Re

�
ri1Gjl1

z1
� ri2Gjl2

z2

�
: �20�

In Eq. (19), m̂ik may be expressed in terms of m1 and m2, in matrix form, as

m̂ik �
�
m1 m2
ÿ1 ÿ1

�
: �21�

Also, the coe�cients Gjlk in Eqs. (19) and (20) are given by

Gjl1 � Aj1 ~m l1 � Al1 ~m j1,

Gjl2 � Aj2 ~m l2 � Al2 ~m j2, �22�

where ~mmn may also be written in matrix form as

~mmn �
�
1 1
m1 m2

�
: �23�

However, Eq. (16) cannot be directly substitued into Eq. (17) to yield the proper interior strains. This
is because the integration limits of the series of extra line integrals of the last term in Eq. (16) are im-
plicitly dependent on the coordinates of the interior points to be calculated. The appropriate procedure
to determine the interior strains here is to ®rst perform spatial di�erentiations of Eq. (15) and then ana-
lytically transform the di�erentiated form of the volume integral into boundary ones in a similar man-
ner, as has been done before for the boundary solution. However, this transformation for obtaining the
interior strains is even more complicated mathematically than for the boundary solution, because of the
presence of singularities in the integrand. These di�culties and the process to overcome them will be dis-
cussed next.

3. Exact volume-to-surface integral transformation

For the sake of brevity, the notation of ( p,Q ) or ( p,q ) in the kernel functions to denote the relation
of the source point p with the ®eld point Q at the boundary, or q in the domain, will be omitted in what
follows. As is commonly seen in BEM formulations, the basis for the volume-to-surface integral trans-
formation in BEM is the application of Green's theorems, which require the analyticity of the integrand
of the volume integral to be transformed. Upon spatial di�erentiations of Eq. (15) and using Eq. (17),
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the interior strains can be expressed as sums from three contributions:

ejl� p� � eSjl� p� � eTjl � p� � eOjl � p�: �24�

The strains, eSjl� p�, given by Eq. (18), are those contributed by the displacement and traction terms at
the boundary; the strains, eTjl � p� are the contributions by the additional `thermal traction' term at the
boundary, and are given by

eTjl � p� � ÿ
1

2

�
S

giknkT ~Uijl dS �25�

and eOjl � p�, are the strains due to the domain integral term, given by

eOjl � p� �
1

2

�
Ô
gikT,k

~Uijl dÔ: �26�

In Eq. (26), it is apparent that the function ~Uijl, explicitly given by Eq. (20) but now de®ned for the
mapped domain, contains a pole at the interior point p (zi=0) in the domain. For the application of
Green's theorem to be valid over the domain, a region surrounding this singularity has to be removed
from the domain and the usual limiting process be carried out. To this end, the domain is divided into
two sub-domains as shown in Fig. 2 such that the integrands are assured to be analytic in the sub-
domain O2. The small region of exclusion of the sub-domain O1, as shown in the ®gure, is chosen to be
such as to exclude the pole and to remove the discontinuity along the negative z1-axis occurring in the
integrands of the transformed boundary integrals (see Zhang et al., 1996). Therefore, the strain tensor
due to the domain integral term can now be written as

eOjl � p� � eO1

jl � p� � eO2

jl � p�, �27�

where eO1

jl � p� and eO2

jl � p� represent the strains at the interior point p contributed by the domain integral
of sub-domains O1 and O2, respectively.
As there is no pole in the subdomain O2, one may apply Green's ®rst theorem and rewrite the strains,

eO2

jl � p� as follows

Fig. 2. Exclusion of the region containing singularities.
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eO2

jl � p� �
1

2

 �
Ô

��
gik ~UijlT

�
,k
ÿ
�
gik ~Uijl,kT

��
dÔ

!
� 1

2

��
Ŝ

�
gik ~UijlT

�
nk dŜÿ

�
Ô

�
gik ~Uijl,kT

�
dÔ
�

�28�

For convenience, two new functions, ~Qijlk and ~Rijlkt, are now introduced such that

~Qijlk,tt � ~Uijl,k �29�

and

~Rijlkt,t � ~Qijlk �30�

Recall Green's second identity in terms of two scalar functions j and c,�
Ô
�jr2cÿ cr2j�dÔ �

�
Ŝ

�jrcÿ crj� � n̂ dŜ, �31�

where n̂ denotes the unit outward normal at the boundary Ŝ. By replacing the arbitrary analytical func-
tions j and c in Eq. (31) by T and gikQijk, respectively, this identity can be re-written as�

Ô

�
gik ~Qijlk,ttTÿ gik ~QijlkT,tt

�
dÔ �

�
Ŝ

�
gik ~Qijlk,tTÿ gik ~QijlkT,t

�
nt dŜ: �32�

From Eqs. (6), (29) and (30), the identity can be rewritten as�
Ô

�
gik ~Uijl,kTÿ gik ~Rijlkt,tC1

�
dÔ �

�
Ŝ

�
gik ~Qijlk,tTÿ gik ~QijlkT,t

�
nt dŜ: �33�

Applying Green's ®rst theorem again to the second term on the left-hand-side of Eq. (33) yields�
Ô
gik ~Uijl,kT dÔ �

�
Ŝ

�
gik ~Qijlk,tTÿ gik ~QijlkT,t � C1gik ~Rijkt

�
nt dŜ: �34�

By substituting Eq. (34) into Eq. (28), the strains eO2

jl � p� can now be expressed in terms of purely
boundary integrals as

eO2

jl � p� �
1

2

�
Ŝ

��
gik ~UijlT

�
nk ÿ

�
gik ~Qijlk,tTÿ gik ~QijlkT,t � C1gik ~Rijlkt

�
nt

�
dŜ: �35�

The remaining task of completing the `volume-to-surface' transformation is to determine the unknown
functions, ~Qijlk and ~Rijlkt, according to Eqs. (29) and (30), respectively. Using the method of undeter-
mined coe�cient, these functions can be obtained to be as follows

~Qijlk � 2 Re
�
Vijlk1 ln z1 � Vijlk2 ln z2

	 �36�

and

~Rijlkt � 2 Re

(
Vijlk1

mt1
�z1 ln z1 ÿ z1� � Vijlk2

mt2
�z2 ln z2 ÿ z2�

)
, �37�

where the constant coe�cients Vijlkt are given by
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Vijlk1 �
ri1Gjl1mk1
m211 � m221

and

Vijlk2 �
ri2Gjl2mk2
m212 � m222

:

By direct di�erentiation of ~Qijlk and using Eq. (11), the function ~Qijlk,t in the integrand of Eq. (35)
can be determined to be

~Qijlk,t � 2 Re

(
Vijlk1mt1

z1
� Vijlk2mt2

z2

)
: �38�

With all unknown functions determined, the interior strains, eO2

jl � p� may now be computed through
the boundary integral given by Eq. (35). However, the task remains to examine what happens when the
sub-domain O1 is reduced to zero.

4. Somigliana's identity for interior strains

With reference to Fig. 2 for the original problem domain, consider now the situation as e and rp
approach zero while Eq. (35) still remains valid for the sub-domain O2. Since Eq. (27) is valid for arbi-
trary e and rp,

eOjl � p� � lim
e40, rp40

eO1

jl � p� � lim
e40, rp40

eO2

jl � p�: �39�

Also, since the boundary is continuous, it is evident that the condition

lim
e40, rp40

l1 � lim
e40, rp40

l2 � l0

will lead to

eO1

jl � p� � lim
e4 0, rp4 0

1

2

�
O
gikT,k

~Uijl dO � lim
e4 0

1

2

�e
ÿe

�
gikT,k

~Uijl

�
l0 dz2 � lim

rp40

1

2

�2p
0

�rp
0

�
gikT,k

~Uijl

�
r dr dy, �40�

where r and y are coordinates of the polar coordinate system (r,y ) with the origin at p. Since the func-
tion T,k must be analytic in the sub-domain O1, it can be expressed as an in®nite series of polynomials
about z2=0 or r = 0 in Eq. (40). From that, it can then be readily shown that the volume integral,
eO1

jl � p� will eventually vanish as e and rp approach zero, i.e.

lim
e40, rp40

eO1

jl � p� � 0: �41�

From Eqs. (35), (39) and (41), it immediately follows that the strain tensor at interior points for the
entire domain can be given by

Y.C. Shiah, C.L. Tan / International Journal of Solids and Structures 37 (2000) 809±829 817



eOjl � p� � lim
e40, rp40

eO2

jl � p� � lim
e40, rp40

1

2

�
Ŝ2

��
gik ~UijlT

�
nk

ÿ
�
gik ~Qijlk,tTÿ gik ~QijlkT,t � C1gik ~Rijlkt

�
nt

�
dŜ:

�42�

To perform the indicated integrations in Eq. (42), the boundary of the distorted mapped domain, Ŝ2,
is broken into the outer surface Ŝ0, the surfaces L̂1 and L̂2, and the surface of the oblique ellipse, Ĉp, as
shown in Fig. 3. Thus, Eq. (42) can be further rewritten as

eOjl � p� �
1

2

"�
Ŝ0

F� p,Q�dŜ� lim
e40

�
L̂1�L̂2

F� p,Q�dŜ� lim
rp40

�
Ĉp

F� p,Q�dŜ
#
, �43�

where F( p,Q ) is used, for brevity, to denote the entire integrand in Eq. (42). The procedures for the inte-
gral evaluation for each term in Eq. (43) will next be discussed.

It is evident that the integration along the outer surface of the distorted domain Ŝ0 in Eq. (42) can be
carried out in the usual manner in BEM analysis. Note that the second term on the right-hand-side of
Eq. (43) deals with the discontinuity in the domain since a jump condition across the boundary L̂1 (or
L̂2) appears when the limiting process e 4 0 is taken. To avoid any confusion, it is also worth mention-
ing here that the treatment of the jump condition is not a numerical evaluation issue of dealing with the
multi-valuedness of log(z ) along its branch cut. It is fundamentally an analytical issue of restoring the
analyticity of the integrands to ensure the validity of the application of Green's theorem.

From Eqs. (3) and (7), it can be readily shown that the components of the unit outward normal vector
for the surfaces L̂1 and L̂2 are �ÿk12=

�������������
k11k22
p

, ÿ ������������������
D=k11k22

p � and �k12=
�������������
k11k22
p

,
������������������
D=k11k22

p �, respectively.
By substituting the component vectors into Eq. (42) and taking a limiting process, the integral for a gen-
eral domain as shown in Fig. 1 can be shown to be a series of extra line integrals as follows

Fig. 3. Distortion of the part of the domain O2 without singularities.
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lim
e40, rp40

1

2

�
L̂1�L̂2

F� p,Q�dŜ � 2pgik Im
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�44�

where the operator Im{.} takes the imaginary part of complex quantities. This leaves the integration of
Eq. (42) along the path Ĉp of the oblique ellipse in the mapped plane as rp approaches zero to be deter-
mined.

For an arbitrary point on Cp expressed in the polar coordinates (rp,y ) in the original plane, it can be
readily shown using Eq. (7) that the distorted image of the in®nitesimal arc along Cp can be expressed
by

dŜ �

8<:
���������������������������������������������������������������
k22
k11

sin2 y� cos2 y� k12
k11

sin 2y

s 9=;�rp dy�: �45�

Also from Eq. (7), the components of the unit outward normal vector along Ĉp are given by

n1 � k11 cos y� k12 sin y���������������������������������������������������������������������������������
k11k22 sin2 y� k211 cos2 y� k11k12 sin 2y

q �46�

and

n2 �
����
D
p

sin y���������������������������������������������������������������������������������
k11k22 sin2 y� k211 cos2 y� k11k12 sin 2y

q : �47�

By substituting Eqs. (45)±(47) into the integrand F( p,Q ) and expressing the generalized complex vari-
ables z1 and z2 in polar coordinates in the original plane, it can be proved that taking the limit as
rp 4 0 will lead to vanishing values of the integrals along Ĉp of the last two terms of F( p,Q ). By follow-
ing the same limiting process, the integration of the ®rst two terms can be determined to be as follows
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Ĉp

F� p,Q�dŜ � lim
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,

�48�

where Tp represents the temperature change at the interior point p, and the functions fij(y ) can be shown
to be given by

fij�y� �
� �cos y� m1 sin y� �cos y� m2 sin y�
�cos y� k12 sin y=k11�

����
D
p

sin y=k11

�
: �49�

Also in Eq. (48), the constant coe�cients Nst, Mijlt, and Bijlkst can be further shown to be given by

Y.C. Shiah, C.L. Tan / International Journal of Solids and Structures 37 (2000) 809±829 819



Nst �

0BBBB@
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Mijl1 � ri1Gjl1,

Mijl2 � ri2Gjl2, �51�

Bijlks1 � Vijlk1ms1,

Bijlks2 � Vijlk2ms2: �52�
With the restoration of analyticity for the transformed boundary integral, Eqs. (18), (24), (25), (42)±

(44) and (48) together constitute the corresponding Somigliana's identity for interior strains, viz.
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Ŝ0

��
gik ~UijlT

�
nk

ÿ
�
gik ~Qijlk,tTÿ gik ~QijlkT,t � C1gik ~Rijlkt

�
nt

�
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�53�

All the terms in Eq. (53) can be computed using standard numerical BEM formulations without any
di�culty since the source point (the interior point of interest) is inside the domain and no issue of singu-
lar integration will arise. The corresponding stresses at the interior point can be directly obtained by
simply multiplying the strains by the appropriate sti�ness coe�cients of the constitutive law matrix
according to the well-known Duhamel±Neumann relation

sij � cijklekl ÿ gijT: �54�

5. Numerical examples

The determination of the stresses at any interior point in an anisotropic domain under thermal load-
ing using Somigliana's strain identity, as described above, have been implemented into an existing BEM
program using the standard quadratic isoparametric element formulation. To demonstrate the veracity
of the formulations, three numerical examples are presented here. For all three problems, the material
properties are arbitrarily chosen to correspond to those of a glass±epoxy. Following the usual notation
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for the material properties, but with the asterisks denoting values in the directions of the principal axes,
they are as follows:

E �11 E �22 n�12 G �12 Z�12,1 Z�12,2 a�11 a�22
55 (GPa) 21 (GPa) 0.25 9.7 (GPa) 0 0 6.3 (10ÿ4)/8C 0.2 (10ÿ4)/8C

The ®rst problem treated is deliberately chosen to be a symmetric one with respect to geometry and
the boundary conditions. Thus when the entire physical problem is modelled, the solution at any interior
point along the plane of symmetry can be compared directly with the solution at the boundary node
with the same coordinates when advantage is taken of the symmetry in a subsequent BEM analysis. To
this end, the domain is treated as specially orthotropic and the temperature distribution linear in one
coordinate direction.

For the other two problems, the stresses at the interior points are compared with those obtained as
boundary solutions when using the conventional BEM sub-regioning technique, such that the interior
points of the original domain lie along the interface between the sub-regions in the latter analysis. The
second problem is also chosen to be orthotropic for convenience, and the temperature distribution in the
domain is assumed to be a simple second degree polynomial in both Cartesian coordinate directions.
For the third problem, the material principal axes are taken to be oriented at an angle of 30 degrees
with respect to the Cartesian coordinate axes to illustrate its applicability to general anisotropy. Also,
the temperature distribution in the domain considered is not assumed to be of some simple mathematical
form but instead has to be ®rst determined numerically for the prescribed boundary conditions using a
BEM code for potential theory. The computed temperature distribution is then used in the thermoelastic
analysis.

It is worth reminding here that although the ETM is also used for the determination of the solutions
at the boundary nodes of the domain in the BEM analyses, the computation of the stresses there follow
a somewhat di�erent procedure in conventional BEM analysis from that for interior points. Also, for
the ®rst two problems, because the temperature distributions are assumed to be of simple polynomial
forms, they can be solved too using the particular integral method (PIM) of BEM analysis as suggested
by Deb and Banerjee (1990) and Deb et al. (1991). This technique has been implemented for obtaining

Fig. 4. A thin, orthotropic plate subjected to a linear temperature distribution Ð Example 1.
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boundary solutions and recently used by the present authors to serve as an independent veri®cation of
the solutions at surface nodes obtained using the ETM in their BEM development for anisotropic ther-
moelasticity (Shiah and Tan, 1999a). It is similarly used to check the solutions obtained for the ®rst two
problems treated here. However, it is not used for the third problem because the closed form solution of
the temperature distribution is not readily available. Some other particular integrals would have to be
judiciously chosen for this problem, or alternatively, it would require approximations of the temperature
®eld as simple polynomials in volume cells within the domain using multi-regression analysis (see Deb et
al., 1991). Since the PIM is not the focus of the present study, this has not been implemented in the
BEM computer code used. Indeed, this example highlights the advantage of the proposed ETM as a
general technique for BEM anisotropic thermoelastic analysis, in the same spirit as has been done and
generally accepted now for isotropic analysis.

5.1. Example 1

Fig. 4 shows a thin, square, orthotropic plate ACDF with sides AC and DF constrained in the x2-
direction and sides AF and CD constrained in the x1-direction. The principal material axes of the plate
are chosen to coincide with the global Cartesian axes. It is assumed to be subjected to a temperature dis-
tribution T= 10x2/L, the two sides AF and CD being thermally insulated. For this temperature distri-
bution, Eq. (4) is satis®ed for arbitrary values of the coe�cients of thermal conductivity kij.

The stresses at the interior points along the plane BG as shown in Fig. 4 are ®rst computed via
Somigliana's strain identity, Eq. (53) and the Duhamel±Neumann relation Eq. (54). The entire problem

Fig. 5. BEM mesh of the square plate and the interior points Ð Example 1.

Fig. 6. BEM mesh for half of the square plate Ð Example 1.
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domain is modelled and the BEM discretisation, with 16 boundary elements and 32 boundary nodes is
shown in Fig. 5. Also shown in the ®gure are the interior points indicated by cross symbols at which the
stresses are to be determined. Subsequent BEM analyses are then carried out on one-half of the domain,
BCDG, taking advantage of symmetry, using ®rst the ETM and then the PIM for the boundary sol-
utions. The BEM mesh for these latter analyses is shown in Fig. 6. The computed stresses along the
plane BG are compared obtained using Eqs. (53) and (54).

Table 1 lists the computed normalised stress, s11=E �11a
�
11T0, where T0 is the temperature at DF, at the

various interior points along the vertical plane BG. Also shown for comparison are the results at the cor-
responding boundary nodes using the ETM and the PIM in the BEM analyses when half the physical
domain is modelled. The agreement between these results can be seen to be excellent indeed. It is per-
haps worth mentioning that for this problem, the stress component s11 varies linearly with x2, and the
normalized stress component s22=E �11a

�
11T0 is found in all the BEM analyses to be constant throughout

the domain with a value of ÿ0.670.

5.2. Example 2

The second example treated is a thin, trapezoidal orthotropic plate IJKL (see Fig. 7) which is sub-

Fig. 7. A thin, orthotropic plate subjected to a quadratic temperature distribution Ð Example 2.

Table 1

Comparison of the normalized stresses s11=E �11a
�
11T0 Ð Example 1

Normalized distance x1/L

Normalized boundary stress

s11=E �11a
�
11T0

Normalized interior stress s11=E �11a
�
11T0

ETM PIM ETM

0.1250 ÿ0.2922 ÿ0.2921 ÿ0.2923
0.2500 ÿ0.4178 ÿ0.4180 ÿ0.4172
0.3750 ÿ0.5409 ÿ0.5419 ÿ0.5421
0.5000 ÿ0.6681 ÿ0.6682 ÿ0.6670
0.6250 ÿ0.7898 ÿ0.7916 ÿ0.7918
0.7500 ÿ0.9183 ÿ0.9185 ÿ0.9167
0.8750 ÿ1.0382 ÿ1.0413 ÿ1.0417
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jected to a quadratic temperature ®eld described by T � 3x2
1 � 5x1x2 ÿ 2x2

2. For the purpose of analysis,
the coe�cients of thermal conductivities are assumed to be such that k11/k12=2.0 and k22/k12=5.0, all
de®ned in the global coordinate system, and the governing heat conduction equation, Eq. (4), is satis®ed
for the assumed quadratic temperature ®eld when the heat source term Co/k12=2. The side IJ is
restrained from displacement in the x2-direction, while sides IL and JK are restrained in the x1-direction.

Fig. 8 shows the BEM mesh with a total of 20 quadratic isoparametric boundary elements and 40
nodes. The interior points at which the stresses are computed using Somigliana's strain identity and Eq.
(54) are shown marked by the cross symbols. As a means to verify these results, the the sub-regioning
technique is used in two BEM analyses, employing ®rst the ETM and then the particular integral
approach, to obtain boundary solutions at the interface between the sub-regions where the interior
points in the domain lie. Fig. 9 shows the BEM meshes of the sub-regioning model.

Table 2 shows the computed normalized interior stresses, s11=E �11a
�
11T0 (T0 being the temperature

change at point K in Fig. 7), at the di�erent x1/L positions considered. Also shown for comparison are
the corresponding results obtained using the sub-regioning BEM using the ETM as well as the PIM at
the interface boundary nodes of the sub-regions. The comparison of the results for the normalized stres-
ses s22=E �11a

�
11T0 and s12=E �11a

�f11T0 are shown in Tables 3 and 4, respectively. Again, it may be noted
that the deviations between the interior point solutions and the corresponding boundary node solution
of the stresses are very small indeed.

Fig. 8. BEM mesh of the trapezoidal plate and the interior points Ð Example 2.

Fig. 9. BEM mesh when using the subregioning technique Ð Example 2.
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5.3. Example 3

The preceding examples have been chosen such that the veri®cation of mathematical soundness of the
formulations developed can be readily provided using the alternative PIM, albeit for boundary solutions.
As a more complicated example, the third problem is a thin plate with a central hole as shown in Fig.
10. The sides EF and GH are restrained from displacement in the x2-direction, while the other two sides
FG and HE are free. To prevent rigid body motion, point E is also constrained in the x1-direction. As

Table 2

Comparison of the normalized stresses s11=E �11a
�
11T0 Ð Example 2

Normalized distance x1/L

Normalized boundary stress

s11=E �11a
�
11T0

Normalized interior stress s11=E �11a
�
11T0

ETM PIM ETM

0.0625 ÿ0.2309 ÿ0.2309 ÿ0.2304
0.1250 ÿ0.2350 ÿ0.2352 ÿ0.2344
0.1875 ÿ0.2409 ÿ0.2410 ÿ0.2409
0.2500 ÿ0.2506 ÿ0.2508 ÿ0.2500
0.3125 ÿ0.2614 ÿ0.2605 ÿ0.2616
0.3750 ÿ0.2762 ÿ0.2763 ÿ0.2755
0.4375 ÿ0.2915 ÿ0.2914 ÿ0.2917
0.5000 ÿ0.3107 ÿ0.3107 ÿ0.3099
0.5625 ÿ0.3295 ÿ0.3293 ÿ0.3298
0.6250 ÿ0.3519 ÿ0.3518 ÿ0.3513
0.6875 ÿ0.3746 ÿ0.3744 ÿ0.3747
0.7500 ÿ0.4000 ÿ0.3998 ÿ0.4007
0.8125 ÿ0.4324 ÿ0.4319 ÿ0.4308
0.8750 ÿ0.4672 ÿ0.4669 ÿ0.4728

Table 3

Comparison of the normalized stresses s22=E �11a
�
11T0 Ð Example 2

Normalized distance x1/L

Normalized boundary stress

s22=E �11a
�
11T0

Normalized interior stress s22=E �11a
�
11T0

ETM PIM ETM

0.0625 0.1787 0.1792 0.1797

0.1250 0.1442 0.1442 0.1445

0.1875 0.1105 0.1106 0.1111

0.2500 0.0795 0.0792 0.0795

0.3125 0.0496 0.0495 0.0499

0.3750 0.0225 0.0220 0.0223

0.4375 ÿ0.0034 ÿ0.0037 ÿ0.0032
0.5000 ÿ0.0265 ÿ0.0271 ÿ0.0268
0.5625 ÿ0.0484 ÿ0.0488 ÿ0.0484
0.6250 ÿ0.0676 ÿ0.0682 ÿ0.0680
0.6875 ÿ0.0846 ÿ0.0848 ÿ0.0848
0.7500 ÿ0.0971 ÿ0.0976 ÿ0.0976
0.8125 ÿ0.1055 ÿ0.1055 ÿ0.1063
0.8750 ÿ0.1061 ÿ0.1077 ÿ0.1068
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for the boundary conditions of the potential problem, a temperature of T= 10 is prescribed for sides
EF and GH, while the surfaces FG and HE are insulated. Also, on the inner surface of the hole, the tem-
perature is prescribed to be zero. The coe�cients of conductivity are taken be such that k�11=k

�
22 � 9:8857

for the glass/epoxy (Herakovich, 1998). Fig. 11 shows the BEM meshes for the problem, modelled with
60 quadratic isoparametric elements. Also shown in the ®gure are the interior points, marked by cross
symbols.

The problem requires the temperature ®eld and its gradients in both x1 and x2 directions for all
boundary nodes and interior points to be ®rst obtained. This is achieved by the domain mapping scheme
to solve the anisotropic ®eld problem using BEM (see Shiah and Tan, 1999a for details), using exactly
the same meshes as those for the thermoelasticity problem. Once the temperature distribution has been
obtained from the potential theory analysis, it is used in the subsequent thermoelastic BEM analysis. As

Table 4

Comparison of the normalized stresses s12=E �11a
�
11T0 Ð Example 2

Normalized distance x1/L

Normalized boundary stress

s12=E �11a
�
11T0

Normalized interior stress s12=E �11a
�
11T0

ETM PIM ETM

0.0625 0.0074 0.0079 0.0071

0.1250 0.0181 0.0183 0.0183

0.1875 0.0329 0.0332 0.0327

0.2500 0.0494 0.0495 0.0494

0.3125 0.0679 0.0681 0.0677

0.3750 0.0874 0.0875 0.0871

0.4375 0.1068 0.1070 0.1067

0.5000 0.1268 0.1269 0.1260

0.5625 0.1443 0.1446 0.1444

0.6250 0.1626 0.1628 0.1612

0.6875 0.1756 0.1760 0.1760

0.7500 0.1901 0.1903 0.1872

0.8125 0.1924 0.1926 0.1933

0.8750 0.1994 0.1987 0.1936

Fig. 10. A thin, anisotropic plate with a hole subjected to a non-uniform temperature distribution Ð Example 3.
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mentioned previously, the particular integral approach is not employed to solve this problem as it would
require signi®cant modi®cations to the BEM computer code used, and this is not the goal of the present
study. Thus, for the purpose of veri®cation, the problem is solved again by the conventional BEM sub-
regioning scheme using the ETM only. Fig. 12 shows the BEM discretisations of the sub-regions with
nodes at the interface corresponding to those interior points in the single domain model. Fig. 13 shows
the variations of the normalized stress, s22=E �22a

�
22T0 where T0 is the prescribed temperature along EF

(or HG ), from the interior as well as boundary solutions along the mid-horizontal plane of the plate.
The other stress components s11 and s12 are consistently at least one order smaller in magnitude than
the stress component s22 and are less signi®cant. Hence they are not presented here. As can be seen
again, the solutions for the interior points agree very well with the boundary solutions obtained using
the BEM sub-regioning technique. It is perhaps also worth noting in Fig. 13 that with the mesh discreti-
sations used, there is less scatter of the plotted points from the best-®tted curves for the interior sol-
utions when compared to those for the boundary solutions, a feature also commonly seen in isotropic
analysis.

Fig. 11. BEM mesh of domain treated as a single region Ð Example 3.

Fig. 12. BEM mesh of domain using the sub-regioning technique Ð Example 3.
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6. Conclusions

In the BEM for elastostatics involving thermal e�ects, the direct formulation in its basic form leads to
a volume integral term in the boundary integral equation. The exact transformation of this volume inte-
gral term to surface integrals for 2-D anisotropic elasticity has only recently been successfully achieved
for the solution of the boundary displacements and tractions. As a secondary process, the displacements
at any interior point, if required, can directly be computed using the Somigliana's displacement identity
once the boundary solutions have been obtained at all points. In principle, the corresponding
Somigliana's strain identity can be obtained for the strains at the interior point by di�erentiating the dis-
placement identity, in the same manner as for isotropic elasticity. However, this is not by any means a
straightforward process because of the presence of some extra line integrals which are along paths that
traverse the interior of the domain. These extra line integrals arise from the exact volume-to-surface inte-
gral transformation of the volume integral term associated with the thermal e�ects. In this paper, the
analytical di�culties in the derivation of the Somigliana's strain identity for an anisotropic body sub-
jected to thermal loads have been discussed and the procedures to overcome these di�culties have also
been described. The formulations developed have been implemented into an existing BEM computer
code and three numerical examples have been presented to demonstrate their veracity. The present work
marks the completion of the BIE development using the exact analytical transformation in restoring the
BEM as a boundary solution technique for 2-D anisotropic elasticity when thermal e�ects are con-
sidered.
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